
1

ZOHO
Hugo van Rossum \\ Maren Hengelmolen \\ Liva Sadovska \\ Sander Bentvelsen

CUB3D

2

Planning BK7083
21-01-2021

Densify the city with sustainable living and working space, which
benefit both the user and neigbouring community, with tailored
modular and flexible units.

3

4

Planning

5

Planning

Less waste. Less emission. Less material use.

Main project goal:
Sustainability & Flexibility

BK7083
21-01-2021

6

Planning

Additional design goals

Creating Clusters

The residential functions are clustered around
their preferred communal node (for example,
the study space). This way they are more
accessible to those that use them the most,
while also separating the users with different
lifestyles.

Outdoor Garden

All residential units are connected to the
central communal garden. This way, they all
have access to a pleasant open and green area
to relax in. Furthermore, commuting through it
stimulates encounters between neighbours.

Separating public/private

A privacy gradient ensures separation between
the public and private areas inside the building,
while in between communal areas serve as
transition. This way the residents can enjoy a
peaceful and quiet living space, without them
having to worry about noise or compromised
privacy.

Activating the street

The Vijverhofstraat is ‘activated’ with
opportunities for people to dine and shop
there. this aligns with the city’s plan to turn the
old metroline into a ‘Highline’. This contributes
to the amount of visitors and significance of
the area.

Zanderroth Architekten: Big yard Berlin De Urbanisten: Hofbogenpark

BK7083
21-01-2021

7

Program of requirements

Housing

Student housing 80 units
Assisted living 30 units
Starter housing 100 units

Communal Spaces

Underground parking (0.5 parking lots per
apartment or more)
Communal garden
Workshop
Common room (co-cooking)
Study space
Bike parking (1 per resident)

Public Spaces

Shared car parking
Hub
Community center
Library
Music rooms
Offices
Gym
Makerspace

Planning BK7083
21-01-2021

8

Planning Context connection analysis

1:2000

Public transport

Main car access road

Prominent cycling lane

Future park lane

BK7083
21-01-2021

9

Private area Communal/Private working area Public area Scores

Possibility to: Residents W
ei

gh
t

W
or

ks
ho

ps
 sp

ac
es

St
ud

y-
/w

or
ks

pa
ce

s

Co
m

m
un

al
 g

ar
de

n

Co
m

m
on

 ro
om

Hu
b

Co
m

m
un

ity
 ce

nt
er

Lib
ra

ry

M
us

ic
ro

om
s

Gy
m

M
ak

er
sp

ac
es

Of
fic

es

Un
de

rg
ro

un
d

pa
rk

in
g

Re
st

au
ra

nt
s

Co
ffe

e
co

rn
er

Sh
op

s

Un
de

rg
ro

un
d

bi
ke

s

As
sis

te
d

liv
in

g

St
ud

en
ts

Yo
un

g
pr

of
es

sio
na

ls

work in a quiet space Assisted living 1 2
Students 3 6
Young professionals 3 9

work in groups Assisted living 2 4
Students 3 3
Young professionals 3 6

rest in a quiet space Assisted living 3 6
Students 2 4
Young professionals 2 4

be entertained Assisted living 3 12
Students 3 9
Young professionals 3 9
Assisted living 2 22
Students 3 27
Young professionals 2 22

shop for groceries Assisted living 3 3
Students 3 3
Young professionals 3 3
Assisted living 2 4
Students 2 0
Young professionals 3 4

store bikes or cars Assisted living 2 4
Students 2 4
Young professionals 3 4

go out Assisted living 2 4
Students 3 6
Young professionals 2 4

Total score 61 62 65

interact with other residents and
meet new people

start or to start working at a
company

Planning Residential perspectives BK7083
21-01-2021

10

Private area Communal/Private working area Public area Scores

Possibility to: Residents W
ei

gh
t

W
or

ks
ho

ps
 sp

ac
es

St
ud

y-
/w

or
ks

pa
ce

s

Co
m

m
un

al
 g

ar
de

n

Co
m

m
on

 ro
om

Hu
b

Co
m

m
un

ity
 ce

nt
er

Lib
ra

ry

M
us

ic
ro

om
s

Gy
m

M
ak

er
sp

ac
es

Of
fic

es

Un
de

rg
ro

un
d

pa
rk

in
g

Re
st

au
ra

nt
s

Co
ffe

e
co

rn
er

Sh
op

s

Un
de

rg
ro

un
d

bi
ke

s

As
sis

te
d

liv
in

g

St
ud

en
ts

Yo
un

g
pr

of
es

sio
na

ls

work in a quiet space Assisted living 1 2
Students 3 6
Young professionals 3 9

work in groups Assisted living 2 4
Students 3 3
Young professionals 3 6

rest in a quiet space Assisted living 3 6
Students 2 4
Young professionals 2 4

be entertained Assisted living 3 12
Students 3 9
Young professionals 3 9
Assisted living 2 22
Students 3 27
Young professionals 2 22

shop for groceries Assisted living 3 3
Students 3 3
Young professionals 3 3
Assisted living 2 4
Students 2 0
Young professionals 3 4

store bikes or cars Assisted living 2 4
Students 2 4
Young professionals 3 4

go out Assisted living 2 4
Students 3 6
Young professionals 2 4

Total score 61 62 65

interact with other residents and
meet new people

start or to start working at a
company

Planning Residential perspectives BK7083
21-01-2021

11

Resident ’s private area Communal / Private working area Public area

Communal
garden

Communal
garden

Communal
garden

Communal
gardenHubCommunal

garden
Communal

garden
Communal

garden
Communal

garden

Assisted living
Students
Young professionals
Visitors

Planning Metro diagram BK7083
21-01-2021

12

Configuring

13

REL chartConfiguring BK7083
21-01-2021

14

Growth hierarchy

Parking

Bike storage

Garden

Workshops

Coffee corner
Music Room

Librairy

Restaurant

common
room

Community
Centre

Makerspaces

Study spaces

Gym

Offices

Hub

Apartments

Storage

Shops

Coffee corner
entrance

Side entrance
residents

Side entrance
visitors

Car road
entrance

Leading agents

Neutral agents

Dynamic agents

Following agents

BK7083
21-01-2021

Configuring

An extrension of the REL chart

According to our design strategy with privacy gradients and the
decision to cluster functions around hubs, a hierarchy of spaces
arises. When the growth algorithm seeds and grows spaces, the
matrix is used to look up which spaces should grow or “follow”
which spaces. However, not every space finds it important to
follow another. Some spaces are dependant on the location of
the hubs but the hubs themselves are not affected by the spaces
following them. This relationship indicated in the matrix by lack
of symmetry across the diagonal.

The following bubble diagram illustrates the meaning of this
asymmetry along the diagonal in the REL chart. For example,
the co-cooking area and community garden are connected in
the metro diagram, this is also reflected in the REL chart. Howe-
ver, because the co-cooking area indicates that it would need
to grow towards the garden, and the garden does not indicate
any preference for growing towards the co-cooking, a hierarchy
arises: co-cooking follows the garden, not the other way around.

15

270 800

180

Final voxel size: 3240 x 3240

Why this size?
	 - Height & width = ceiling height
	 - Staircase from floor to floor should fit
	 - Staircase is fit for multiple functions 		
 	 (residential, commercial)
	 - Can be a size for tiles of different
		 functions

Bouwbesluit
	 - Width stairs: minimum is 800 mm
	 - Riser: minimum is 180 mm
	 - Tread width: minimum is 220 mm
	 - Head room: minimum is 2300 mm

3240

Voxel size BK7083
21-01-2021

Configuring

16

Notebook Flowchart

3D Boundry volume mesh

Existing data

Data made by us

Notebooks

Voxelize notebook Voxelized envelope 1620

Voxelized envelope 972

Voxelized envelope 324

Solar studies
notebook Solar accessibility 324

Sky view factor 324

Solar envelope 324

Floor preference
notebook

Quietness
notebook

Facade closeness
notebook

3D Context volume meshes

Entrance closeness
notebook

2D Context street meshes

3D Context dome mesh

SE facade closeness
lattice 324

SW facade closeness
lattice 324

NE facade closeness
lattice 324

Facade closeness
lattice 324

Closeness to car park
entrace lattice 324

NW facade closeness
lattice 324

Subterrain closeness
lattice 324

Ground floor closeness
lattice 324

Quietness lattice 324

Closeness to visitors
entrance lattice 324

Closeness to coffee corner
entrance lattice 324

MCDA growth,
shafts and corridors

notebook

Relations and
preferences matrix

Street noise data

Function occupation
lattice 324

Shafts and corridors
lattice 324

Forming notebook Building meshes

BK7083
21-01-2021

Configuring

17

Computation Overview Flowchart BK7083
21-01-2021

Configuring

3D Boundry Volume Mesh

Voxelize

Data made by us

Existing data

Processes that are done

Start

Voxelized Envelope

Sun vectors

Compute the solar
envelope

Compute the Sky
View Factor lattice

Spherical Coordinate
System

Sky View Factor
Lattice

Compute the sun
access lattice

Sun Access Lattice

Voxel Size

Compute the
entrance access

lattice

Outside Connections

Compute the street
noise lattice

Compute the
closeness lattice to

the ground floor

Compute the
closeness lattice to

the subterrain

Compute the
closeness lattice to

the NW facade

Compute the
closeness lattice to

the SW facade

Compute the
closeness lattice to

the SE facade

Compute the
closeness lattice to

the NE facade

Compute the
closeness lattice to

the facade

Entrance Access Lattice Street Noise Lattice Closeness Lattice
(Ground Floor)

Closeness Lattice
(Subterrain)

Closeness Lattice
(NW Facade)

Closeness Lattice
(SW Facade)

Closeness Lattice
(SE Facade)

Closeness Lattice
(NE Facade)

Closeness Lattice
(Street)

Voxel values

Connectivity and
Preference matrix

Generate the seed
agents

Starting location
of the agents

Final building shape

First fase of the
growth algorithm

Solar Envelope
(available voxels)

3D Context Mesh

Entrance Locations
Street Noise Data

Aggregation

Iterate

Best seed locations

Second fase of the
growth algorithm

Tiled envelope

Boolean marching
cubes

Facade tilesets

Shafts and corridors
growth

Shaft and corridor lattice

End

18

Configuring Solar envelope

Create an envelope based on solar blockage

The created envelope will be used as the base availability lattice on which
all other calculations for static data and the growing of the agends are
built upon.

Input: Voxelized envelope, context mesh

Output: Solar envelope

Create a list of all vectors pointing towards the sun locations over the year

For all voxels inside of the envelope:
	 Cast a ray from the list of sun vectors from the voxel centroid
	 If the ray intersects with a mesh:
		 Ignore the ray and continue the loop
	 Else:
		 Check if the reversed ray intersects with a mesh
		 If this new ray intersects with a mesh:
			 Register the intersection for the voxel to a new list
		 Else:
			 Register a non intersection to the list

For each voxel inside the envelope:
	 Map the amount of intersections in a range between 0 and 1, where
	 0 means 	blocking a lot of light for neighbouring buildings and 1 not
	 blocking any light.

Set a limit to how much light the voxels are allowed to block and create
a new lattice with either True or False values, depending on the amount
of light blocked

Export this lattice as the new availability lattice

BK7083
21-01-2021

19

Configuring Solar accessibility

Ensure spaces get enough sunlight

This data is used for the growing algorithm by certain agents that prefer
a high solar accessibility, for instance: the residential quarters and study
spaces.

Input: Solar envelope, context mesh

Output: Solar accesibility lattice

Create a list of all vectors pointing towards the sun locations over the year

For all voxels inside of the envelope:
	 Cast a ray from the list of sun vectors from the voxel centroid
	 If the ray intersects with a mesh:
		 Append an intersection to a new list
	 Else:
		 Append a non intersection to the list

For each voxel inside the envelope:
	 Map the amount of intersections in a range between 0 and 1, 		
	 where 1 means receiving the most of light and 0 receiving the 	
	 least amount of light

Export the newly created lattice that lists the values of solar accessibility
in a range from 0 to 1

BK7083
21-01-2021

20

Configuring Sky view factor

Ensure functions are able to see enough of the sky

This data is used for the growing algorithm by certain agents that prefer
a high sky view factor, for instance: the office spaces and garden.

Input: Solar envelope, context mesh, dome mesh

Output: Sky view factor lattice

Instead of creating a list of vectors pointing towards the sun locations
over the year, append the normals of a dome mesh to a list, created to
map the sky in equal proportions

For all voxels inside of the envelope:
	 Cast a ray from the list of normals from the voxel centroid
	 If the ray intersects with a mesh:
		 Append an intersection to a new list
	 Else:
		 Append a non intersection to the list

For each voxel inside the envelope:
Map the amount of intersections in a range between 0 and 1, where
1 has the least intersections, which means having a high sky view
factor and 0 the opposite

Export the newly created lattice that lists the values of the sky view factor
in a range from 0 to 1

BK7083
21-01-2021

21

Configuring Floor level preference

Setting floor levels for agents

This data is used for the growing algorithm by certain agents that prefer
a proximity to certain floors, for instance: the hub and garden prefer to
be on the ground floor.

Input: Solar envelope

Output: Floor level preference

Create a list of entries based on the height of the imported lattice

Create a matrix that maps the neighbouring entries as if connected from
bottom to top

Select an entry as you would select a floor level (in the visualization it’s 0)

Calculate the distance from that entry to every other one

Map the values from 0 to 1, where 1 is the entry itself and 0 for the entry
that is the furthest from the selected one. Then append them from
bottom to top to in a one dimensional array

Map this array along the z-axis of the entire imported lattice

Multiply this newly created lattice with the solar envelope to set all
unoccupied voxels to 0 and export it

Note:
The reason the Floyd–Warshall algorithm isn’t used here for the full
envelope is because as it is, it’s too heavy to run for the selected voxel
size. For now, we are using a custom algorithm to get a higher resolution.

BK7083
21-01-2021

22

Configuring Closeness to the facade (high resolution)

Ensure access to the facade

This is another parameter to optimize the placement of spaces that need
direct daylight or adjacency to the street.

Input: Avalability lattice, Custom Stencil

Output: Facade closeness lattice

Define stencil as Von Neumann neighborhood with top and bottom
neighbors removed
Apply the stencil to the voxel envelope
Find the number of neighbors for each voxel in the lattice

Create a condition for boundary voxels, where the number of neighbors
is < 4, then select only the ground level voxels
Check envelope with the condition, create a new envelope with only
boundary voxels
For each available voxel inside a 2D slice of the envelope:
	 Append the ID’s of its neighbours to an adjacency list
Create a sparce matrix that contains the connectivity data

Compute distances from all boundry voxels to all other voxels in a 2D
slice
Find the minimum distance for all boundry voxels the other voxels
Add the minimum distance to the corresponding voxel value field
Map the field distance values from 0 - 1, where 0 is the furthest distance
and 1 is the closest

BK7083
21-01-2021

23

Configuring Closeness to a specific facade (high resolution)

Orient for site accessability on a specific side

In accordance to pre-existing program, routes and greenery on the site,
some spaces and entrances require access from a specific facade. By
setting their preference to this facade, an axis is created along which the
algorithm can seed the space.

Define stencil as Von Neumann neighborhood with all but one neighbour
removed
Apply the stencil to the voxel envelope
Find the number of neighbors for each voxel in the lattice

Create a condition for boundary voxels, where the number of neighbors
is < 1, then select only the ground level voxels
Check envelope with the condition, create a new envelope with only
boundary voxels
For each available voxel inside a 2D slice of the envelope:
	 Append the ID’s of its neighbours to an adjacency list
Create a sparce matrix that contains the connectivity data

Compute distances from all boundry voxels to all other voxels in a 2D
slice
Find the minimum distance for all boundry voxels the other voxels
Add the minimum distance to the corresponding voxel value field
Map the field distance values from 0 - 1, where 0 is the furthest distance
and 1 is the closest

Input: Avalability lattice, Custom Stencil

Output: Specific facade closeness lattice

BK7083
21-01-2021

24

Configuring Quietness from street noise

Orient according to traffic noise fall-off

The two main streets around the plot produce significant traffic noise.
According to European Environment Agency, these streets produce
50 and 70db of noise. By mapping the noise fall-off from the street, the
growth algorithm can take into account the spaces where quietness is
especially preferable, such as the library.

Load several meshes representing streets with different noise levels
Get all voxel centers as points

For each voxel :
Calculate the smallest euclidian distance from voxel center to the
first street mesh, using trimesh.proximity
Using the inverse square law, calculate noise values from the
acquired distance and data of level of noise on the street
Add the noise value to the corresponding voxel in the value field

Map the inverse field of noise values to a field of quietness values from
0 - 1, where 0 is the least quiet value and 1 is the quietest value

Repeat quietness value field construction for the second street
Combine the quietness value fields by choosing the lowest quietness
values for each point in the field

Input: Avalability lattice, meshes representing
the streets with different noise levels

Output: Quietness from street noise lattice

BK7083
21-01-2021

25

Configuring Entrance closeness

Ensure access to an entrance

To make sure the agents who need to be close to an entrace can grow
in that direction, an entrance accessibility lattice must be created.

Compute the Floyd-Warshall distance of all voxels to all voxels
Set the entrance voxels based on the entrance locations
For each non-entrance voxel:
	 Find the closest entrance voxel
	 Link the distance to that entrance to that voxel
	 Convert the distance values into values between 0 and 1
Construct the entrance lattice
Interpolate the entrance lattice

Input: Voxelized envelope, entrance locations based on
	 street accessibility

Output: Entrance closeness Lattice

BK7083
21-01-2021

26

Massing

27

Massing

1 - Initial location
The location of the seed agents is calculated
by looking at the static environmental data:
Entrance access, street noise, sky view factor
etc.

2 - Attraction
The different seed agents are attracted to
each other, based on the connectivity matrix .
They ‘walk’ around, until they have reached an
ideal location based on internal attraction and
external data.

3 - Final Location
The seed agents have reached an
equilibrium.

MCDA Seed Allocation

def select-neighbours:
	 circumvent the encountered bug

def distance-lattice:
	 calculate the euclidian distance from the seed agent to 	
	 every voxel

for each agent:
	 for each voxel:
		 check if voxel is available:
			 calculate ‘grade’ (based on 	
	 				 env-data and agent
 				 preference)
			 append best voxel to agent list

while t < threshold:
	 for each agent:
		 calculate a closeness lattice to the seed voxel
		 select-neighbours:
			 check which neighs are available:
				 grade those neighs on dist and env-data
				 append best voxel to agent list
				 remove previous voxel of this agent
	 t += 1

Input: static env-data, pref and
		 connectivity matrix

Output: seed agent positions

BK7083
21-01-2021

28

Massing

Squareness

Ensure agents grow into their desired shape

If there is the need for a space to be more rectangular , instead of
free-form, the squareness algorithm can be used

For each agent (during the growth process):
	 Find the free neighbours based on the chosen stencil,
	 Check if the agent has free neighbouring voxels
	 Check if those neighbours are also neighbours of the previous 	
	 agent

	 For those voxels that were neighbours to the previous agent, increase
		 the voxel value (the more often a voxel has been a neighbour
		 of an agent, the more the voxel value increases)

	 Select the neighbour with the highest voxel value
	 Set the selected neighbour as unavailable
	 The selected neighbour is now the new agent .

Input: Voxelized envelope, squareness preferences

Output: Impacts the growing algorithm

BK7083
21-01-2021Spatial behaviours:

29

Massing

Only accessible for this specific function

Distance between functions

Input: location of new agent

Output: keep-distance-lattice

field = [list of neighbours in a given radius]
for i in field:
	 keep-distance-lattice[loc + i] = agent-ID

###later on, when determining neighbours

if keep-distance[neighbour-location] == agent-ID or -1:
	 neighbours . append(neighbours-location)

BK7083
21-01-2021Spatial behaviours:

30

Massing

Maximum building depth

for each voxel-location of agent:
	 check if all voxels in given distance are occupied in x and y axis:
		 check how many axes don’ t have a n+1th voxel :
			 if amount is 1:
				 make remaining n+1th voxel unavailable

Input: agent locations

Output: updates to avail-lattice

1 - Three directions are filled 2 - All four directions are filled 3 - If there is one direction with only three
voxels remaining, the fourth voxel is made
unavailable

BK7083
21-01-2021Spatial behaviours:

31

Roof light

Input: New agent locations

Output: updates to avail-lattice

roof-light = [list of functions that do not want voxels above them]

if agent-id in roof-light:
	 avail-lattice[neigh-3d-loc[0], neigh-3d-loc[1]] , 2:] = -1

Massing BK7083
21-01-2021Spatial behaviours:

32

Massing MCDA Growth algorithm

1 - Starting the growth
All the agent seeds are evaluated and their
best neighbour is chosen based on the static
env-data and closeness to other agents. This
is done with the connectivity and preference
matrix.

2 - Growing
For each agent, the algorithm evaluates
every voxel and calculates all the possible
neighbors. The best one is chosen.

3 - Finished growth
The max. number of voxels per agent has
been reached, the division of the spaces has
ended.

while t < threshold:
	 for each agent:
		 check if max. amount of voxels has been reached
			 for each agent location:
				 find neighs:
				 check which neighs are available:
					 grade those neighs on dist and env-data
					 append best voxel to agent list
	 t += 1

Input: static env-data, pref and
		 connectivity matrix

Output: Occupation lattice

BK7083
21-01-2021

33

Massing BK7083
21-01-2021

Final Growth

34

Massing Shafts and corridors growth

1 - Selecting voxels to evaluate
Not all the voxels need a shaft to be
placed. The garden for instance would
be strange to take into account.

2 - Finding mean voxels
For every function in de occupation
lattice, a certain amount of voxels are
set, based on the size of each function.
Each function has at least 1 mean voxel
so that later on corridors can grow and
acces all functions.

3 - Mean voxels again
From the previous mean voxels, new
mean voxels are calculated, that will
become the shafts inside the new
lattice.

Make a boolean lattice for all important voxels from the occupation
lattice

For each agent:
	 calculate a number of mean voxels based on the agents occupation

For each mean voxel:
	 calculate 6 new mean voxels for shaft placement

For each mean voxel:
	 calculate the closest distance to a shaft
	 set this path as a corridor

For each shaft:
	 calculate the 2 closest distances to another shaft on the ground
	 floor
	 set these paths as corridors

export the shafts and corridors lattice

Input: Occupation lattice

Output: Shafts and corridors lattice

4 - Corridor growth
Each shaft is connected on the ground
floor to the other shafts. Also second
corridors grow from each mean voxel
to their closest shaft.

BK7083
21-01-2021

35

Shops

Makerspace

Residents entrance

Visitors entrance Music room

Storage

Coffee corner entrance Coffee corner

Apartments

Offices Workshops

Hub

Gym Bikes parking

Study space

Community center Car parking

Restaurant

Co-cooking

Library

Massing BK7083
21-01-2021

36

Forming

37

Forming

Less waste. Less emission. Less material use.

Flexibility BK7083
21-01-2021

38

Forming Modularity

Add building mass. Change function.

BK7083
21-01-2021

39

Modular system

structure + + +shafts infill facade

construction customization

Forming BK7083
21-01-2021

40

Forming

Laminated wooden columns and beams

Kerto Ripa Floor

Demountable facade elements

*Shear forces are countered by constructing
the shafts from strong CLT walls

Construction BK7083
21-01-2021

41

Forming Wooden joint BK7083
21-01-2021

42

Forming Structure and Infill

The load-bearing structure
is constructed first

After that, the partitioning
walls are placed

BK7083
21-01-2021

43

The tiling system

The tiles are created with an underlying system similar to that often seen
in tile based board games. The square voxel is subdivided in three parts
along each edge. One of these subdivisions is equal to the width of a
small corridor or door.

These three parts are then labeled as either a door, wall or open space.
By combining different tiles that match the corresponding edge types,
different spaces can be created from simple tiles.

By then also listing the function type of each tile, such as the entrance
or kitchen (E & K), limitations and recommendations could be added to
the code which tiles can connect to which tiles. Due to time limitations
this is something that we have not developed yet, but could be an inte-
resting concept for peers following this course over the following years.

Forming Modular interior tiles BK7083
21-01-2021

44

Forming Modularity options BK7083
21-01-2021

From office bathrooms...

...to large-scale workplacesTiles can be swapped and matched for desired program and area size.

45

Bedroom Bathroom Living room Living room
+ kitchen

Living room
+ kitchen

Entrance

Living room
+ kitchen

Bedroom Bathroom Living room Kitchen

Forming Residential voxel tiles BK7083
21-01-2021

46

Forming BK7083
21-01-2021Facade tiles

As the buidling grows, more tiles are added and the facade is enriched.

47

Forming

A few subtile corners Tiles Tile variations Forming on voxels

BK7083
21-01-2021Tile creation

48

Input: envelope lattice, several custom tile sets

Output: an .obj of a tiled facade

Load envelope lattice
Remove interior voxels by creating a Von Neumann stencil to detect
neighbours
Apply stencil to envelope lattice
Remove voxels whose neighbour count is <=5

Extract cube lattice from envelope lattice
Tile the envelope lattice with tileset1
Select vertical slices in the lattice whose tiles to replace
Tile selected slices with tileset 2

Export tiled facades

PoligonizationForming BK7083
21-01-2021

49

Forming BK7083
21-01-2021

Tiled voxelized envelope

Winter garden

Roof

West and East facade

Facade 2

Facade 1

52

ZOHO
Hugo van Rossum \\ Maren Hengelmolen \\ Liva Sadovska \\ Sander Bentvelsen

CUB3D

